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Abstract

Background: While existing evidence strongly suggests that immigrant students
underperform relative to their native counterparts on measures of mathematics,
science, and reading, country-level analyses assessing the homogeneity of the
immigrant achievement gap across different factors have not been systematically
conducted. Beyond finding a statistically significant average achievement gap,
existing findings show considerable variation. The goal of this quantitative
synthesis was to analyze effect sizes which compared immigrants to natives on
international mathematics, reading, and science examinations.

Methods: We used data from the Trends in International Mathematics and Science Study
(TIMSS), the Programme for International Student Assessment (PISA), and the Progress in
International Reading Literacy Study (PIRLS). We investigated whether the achievement
gap is larger in some content areas than others (among mathematics, science, and
reading), across the different types of tests (PISA, TIMSS, PIRLS), across academic grades
and age, and whether it has changed across time. Standardized mean differences
between immigrant and native students were obtained using data from 2000 to 2009 for
current Organisation for Economic Co-operation and Development (OECD) countries.

Results: Statistically significant weighted mean effect sizes favored native test takers
in mathematics �d

�
math ¼ 0:38

� �
, reading

�
�d
�
reading ¼ 0:38

�
, and science

�d
�
science ¼ 0:43

� �
. Effects of moderators differed across content areas.

Conclusions: Our analyses have the potential to contribute to the literature about how
variation in the immigrant achievement gap relates to different national-level factors.
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Introduction
Immigration has gained increasing attention worldwide in recent years. It has steadily

increased in the past five decades, primarily in developed countries (OECD 2010a).

This is especially true for traditional countries of immigration, or those largely defined

by a history of settlement through immigration (Buchmann & Parrado 2006) – the

United States, New Zealand, Australia, Canada, and more recently countries such as

Germany. In these countries, the stock of the population that is foreign-born has

steadily increased since the beginning of the past decade (OECD 2010b). Immigration

is a multi-faceted and complex activity. It addresses important demands of the job

market, such as filling gaps created by rapidly-aging populations and decreasing fertil-

ity rates. Furthermore, it is related to issues of human rights, as immigrants tend to
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migrate due to reasons of political, racial, economic, or social strife. The flow of people

into a given country raises many issues, including the extent to which immigrants be-

come successful members of society. For the youngest of immigrants, success in school

is one of the most important indicators of success in society.

The present analysis uses quantitative synthesis methods to examine the extent to

which the gap in achievement between immigrants and natives varies at a national

level. To our knowledge, only one study has compared the magnitude of the immigrant

achievement gap across content areas. Schnepf (2007) separately analyzed the three

data sets we combined.

Background
One of the most influential factors in the future success of immigrants, particularly

children, is education. Internationally, evidence demonstrates that immigrant students

are at an educational disadvantage, typically scoring lower on assessments of science,

mathematics, and reading, leading to poor educational outcomes such as a low

likelihood of participating in pre-primary education and low graduation rates (e.g.,

Ammermuller 2007; Heus et al. 2009; Ma 2003; OECD 2010a; Portes & MacLeod 1996;

Portes & MacLeod 1999; Rangvid 2007; Rangvid 2010; Zinovyeva et al. 2008).

Immigrants’ success or failure largely depends on the opportunities they encounter.

International educational achievement has been an important factor for economic

growth (Hanushek & Kimko 2000), yet strong evidence suggests educational opportun-

ities are not provided equally to immigrants as they are to natives. Without adequate

educational opportunities and, subsequently, adequate pay, immigrants may become a

permanent part of the underclass and “foster undesirable subeconomies” to the detri-

ment of society as a whole (Martin 1999, p. 1). Furthermore, the successful integration

of immigrants is essential for the maintenance of a stable society, which cannot prop-

erly function when large minority groups such as immigrants live in a permanent mar-

ginal situation (Christensen 2004).

Some evidence indicates that immigrant students are more likely than natives of a

country to attend low-quality schools (OECD 2010a). This raises important questions

about the quality of education immigrants across the world receive. Due to the in-

creased importance of immigration worldwide, a large number of studies have investi-

gated issues such as employment and earnings outcomes, immigrant adjustment and

adaptation, discrimination, and history. Relative to the expansive coverage of the afore-

mentioned subjects, the educational achievement of young immigrants has received less

attention in the literature.

In this quantitative synthesis we compute standardized mean differences comparing

immigrant students to native students on mathematics, reading, and science in the

three major cross-national assessments – TIMSS, PISA, and PIRLS. We use moderator

analyses to assess the homogeneity of the gap across OECD countries and how its size

relates on various macro-level dimensions. We examine one general research question,

and four specific research questions through these analyses:

On average, is there an immigrant achievement gap?

1. Does the magnitude of the gap differ across content areas – mathematics, science,

and reading?
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2. Does the immigrant achievement gap vary across the three tests – PIRLS, PISA,

and TIMSS?

3. Does the magnitude of the gap differ across grade and age?

4. Has the size of the immigrant achievement gap changed over time?

Existing research on the immigrant achievement gap

Some research on immigrant education has focused on the immigrant achievement gap

and on investigating whether or not this gap exists across various countries. Most ana-

lyses compare immigrants’ to native students’ achievement, controlling for a variety of

sociodemographic variables such as language spoken in the home, gender, and various

proxies for poverty such as books owned in the home and parents’ occupation. To a

large extent, an immigrant achievement gap has been found across the board. The lit-

erature is inconsistent in its use of covariates. For example, while some studies control

for race and ethnicity variables, others do not. It thus becomes challenging to generate

theories about the immigrant achievement gap and makes comparisons of the size of

the gap difficult. An analysis that investigates this deficit unconditionally avoids treating

diverse conditional effects as if they were comparable. In some instances the gap

is strongly associated with such variables – so strongly that the gap may become

insignificant when these characteristics are entered in statistical models (e.g., Portes &

MacLeod 1996; Warren 1996). In other studies, these variables do not seem to share

variance with the gap (Driessen & Dekkers 1997), leading authors to conclude that in-

stitutional differences such as segregation across schools need to be statistically con-

trolled in order to better understand how immigrant status affects achievement

(Buchmann & Parrado 2006; Christensen 2004; Dronkers & Levels 2007; Marks 2005;

Rangvid 2007; Schnepf 2007; Wöβmann 2003). It thus becomes challenging to generate

theories about the immigrant achievement gap and strengthens the need for an analysis

that investigates this deficit unconditionally.

By and large, research has not indicated whether the immigrant achievement gap is a

homogenous phenomenon across countries. Specifically, no systematic effort has yet

been made to understand the phenomenon cross-nationally, considering possible

sources of variation such as content area (i.e., academic subject) and type of content

assessed. A systematic analysis is necessary to soundly understand the gap and requires

first looking at it unconditionally, as methodologies for controlling demographic

variables in published studies vary greatly and make results difficult to compile in a

comprehensive manner. Our initial investigations revealed that most publications do

not report the size of the unconditional achievement gap (Thompson et al. 2011),

making it difficult to compare findings across studies, and to assess the size of the im-

migrant achievement gap. Furthermore, an overwhelming number of published articles

and reports exploring this phenomenon have used data from the 2000 and 2003 PISA

assessments. Other important cross-national assessments, such as TIMSS and PIRLS,

seem largely absent. Therefore, while the general consensus is that an immigrant

achievement gap exists, the extent to which it varies across populations based on age

or the type of content assessed has yet to be examined.

The assessments most often used in the immigrant-education literature differ across

several dimensions. The PISA is an assessment of mathematics, science, and reading

skills of 15 year-old students while the TIMSS measures both 4th and 8th grade students
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on concepts of mathematics and science. PIRLS assesses 4th grade students on concepts

of reading and literacy. According to the OECD, PISA is not linked to the school cur-

riculum (see OECD PISA Website), but rather evaluates “to what extent students at the

end of compulsory education, can apply their knowledge to real-life situations and [are]

equipped for full participation in society”. The central question here is whether or not

students can employ what they have learned in school to situations they are likely to

encounter in their daily life – what is the yield of education at or near the end of com-

pulsory schooling? In contrast, PIRLS and TIMSS are tied to curriculum, and evaluate

achievement up to a certain point in schooling (see PIRLS & TIMSS Websites). Their

central aim is to evaluate student knowledge of course content that is actually taught

(Hutchison & Schagen 2007). This diversity in assessment purposes and populations

raises the possibility that the immigrant achievement gap reported in existing studies

may vary by the age of the students, as well as the purpose of the test or the type of

content assessed. As an example, because most studies of 15 year-olds employ the

PISA, the average immigrant achievement gap as currently understood in PISA may

not extrapolate to younger populations.

Systematic and cross-national approaches to immigrant issues have the potential to

highlight different immigrant experiences as well as to reveal international trends.

Portes (1997) suggests such research is useful for three specific reasons:

…first, to examine the extent to which theoretical propositions “travel,” that is, are

applicable in national contexts different from that which produced them; second, to

generate typologies of interaction effects specifying the variable influence of causal

factors across different national contexts; third, to themselves produce concepts and

propositions of broader scope. (p. 820)

Our study targets Portes’s third point. We believe this study will contribute to the

growing literature on the immigrant achievement gap.

We do not include other macro-level factors as moderators, as the information available

in most administrations of the three tests is limited, namely, information on the origin

country of immigrant pupils is not available. Recent literature indicates that in order to

fully understand immigrants’ outcomes in a destination country, we must account for

both origin and destination effects, the so-called ‘double perspective’ approach (Dronkers

et al. 2014; Levels & Dronkers 2008; Levels et al. 2008; see Limitations and Conclusion).
Methods
Our quantitative synthesis did not retrieve data from publications of secondary ana-

lyses, which is the traditional mode of data retrieval for quantitative syntheses, or

meta-analyses. Rather we computed mean differences directly from raw data. The pri-

mary reason for this was that, in the main, existing studies of the immigrant achieve-

ment gap did not provide the information necessary for us to compute effect sizes,

which would have limited our analysis significantly. In addition, because the inter-

national databases are available free of charge from the IEA (for PIRLS & TIMSS) and

OECD websites (for PISA), secondary analyses are not necessary. Using the primary

datasets reduces potential sources of errors introduced when compiling data from pub-

lished studies that may have used different methods of data extraction and aggregation.
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Still, although data retrieval for this study was less conventional, other methods

employed for the study were the same as those used in typical meta-analyses. Within

content areas (i.e., mathematics, reading, and science), we obtained single effect sizes

for each grade within each OECD country.

We included only OECD countries in this analysis for several reasons. First, at least a

third of all immigrants across the world move from developing to developed countries

or from one developed country to another (UNDP 2009). The OECD is an organization

composed of some of the world’s most advanced and developed countries, many of

which experience significant immigration. Second, in the past decade, the OECD has

devoted significant attention to the issue of immigration within its member countries.

It has released yearly publications such as the International Migration Outlook, Where

Immigrant Students Succeed – A Comparative Review of Performance and Engagement

in PISA 2003, and Equal Opportunities-The Labour Market Integration of the Children

of Immigrants (see for example OECD 2006a, b, c, 2010a, b). We focused on the immi-

grant achievement gap as a phenomenon particular to a specific type of immigration –

country to country as opposed to within country migrationa. The latter has not been

well investigated in the immigrant achievement gap literature and cannot be studied

given the data available from the three testing programs.

Effect sizes were computed with various software using data available in the original

datasets for PIRLS, PISA, and TIMSS. An immigrant was defined as a student not born

in the country of testing. Immigrant status is derived from a “yes” or “no” question in-

cluded in all three assessments that asks the student whether or not they were born in

the country of testing.

First, we computed means and standard deviations for native and immigrant students

for each country using the International Data Base (IDB) Data Analyzer (IDB Analyzer

(Version 2) 2009), an application developed by the IEA Data Processing and Research

Center to be used in conjunction with SPSS. The IDB Analyzer uses the total student

weight and five plausible values for each outcome (OECD 2006b; OECD 2003a; Martin

& Kelly 1996; Martin et al. 2003) to obtain population estimates of mean performance

as well as an estimate of the variance of this quantity at the country level. We then

computed mean differences, effect sizes, and effect-size variances using Excel because

the IDB analyzer does not compute effect sizes or effect-size variances. All other calcu-

lations and analyses were conducted in R (R Development Core Team 2011; R Core

Team 2014) using the metafor package (Viechtbauer 2010a, b).

Moderators

Moderators are variables that may affect or relate to the sizes of effects. The three moder-

ators in this study (year, test, and, grade) were selected according to gaps in current re-

search. First, as previously discussed, current knowledge based on studies of the

immigrant achievement gap may only be generalizable to 15-year olds tested on concepts

attached to real-world applications. Thus, we examined the test – PISA, TIMSS, or PIRLS

–and related features – year implemented and grade assessed – as moderators. We

investigated whether the immigrant achievement gap has changed across time in the past

decade, considering that most existing studies have only employed the 2000 and 2003

PISA data. In regression analyses moderators test and grade were treated as discrete

variablesb and year was continuous and centered at 2000 (the first year of data).
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Effect sizes

To quantify the immigrant achievement gap, we calculated mean differences at the

country level between immigrant and native test takers. Considering differences among

measures and scales for outcomes, a standardized mean difference was the most rea-

sonable choice for computing effect sizes given the aggregated format of the data. The

unbiased standardized-mean-difference effect size is

di ¼ 1−
3

4 nNi þ nIi
� �

−9

 !
�Y N
i −�Y

I
i

Si
; ð1Þ

where �Y N
i and �Y I

i are the sample mean outcomes for the respective native and immi-

grant samples of the ith test administration, nNi and nIi are the respective native and im-

migrant sample sizes from the ith test administration, and Si is the pooled standard

deviation of the ith sample (Hedges 1981)c. Therefore, a positive effect size is inter-

preted as an achievement gap which favors native test takers, and a negative effect size

favors immigrant examinees. As shown in Hedges (1981) and Borenstein (2009, p. 226),

the variance of di is

vi ¼ nNi þ nIi
nNi n

I
i

þ d2
i

2 nNi þ nIi
� � : ð2Þ

Data were gathered for all TIMSS, PISA, and PIRLS administrations during the years
2000 to 2009 for all countries that were members of the OECD as of 2011. This re-

sulted in an initial set of 542 unique effect sizes classified by country, year, test, grade,

and content area. Except for when comparing across content areas, samples for which

effect sizes were computed are independent. Typically, during any given test adminis-

tration, students complete tests in multiple content areas at one time. This results in a

dependency in responses across content areas, which further translates to dependence

among effect sizes. To address this issue, we analyzed the three content areas

separately.

Some test administrations had very low immigrant sample sizes, the lowest of which

was only two students. Because the consistency and efficiency properties of the stan-

dardized mean difference rely on large sample statistical theory, we excluded samples

which had an immigrant sample size (nI) less than 30. As a result, 29 effect sizes were

excluded (roughly 5% of the original sample), bringing the number of effect sizes used

in the quantitative synthesis to 513.

Analyses

A typical method of choosing a quantitative synthesis model (fixed or random effects)

is to determine the extent of homogeneity among effect sizes. Multiple methods have

been proposed, the most common being the homogeneity test referred to as the Q test.

The formula for Q, as shown in Shadish and Haddock (2009), is

Q ¼
Xk
i¼1

v−1i di−

Xk

i¼1
div−1iXk

i¼1
v−1i

0
@

1
A

2

: ð3Þ

If all studies are homogeneous and share a common effect size, Q will be approxi-
mately distributed as a chi-square distribution with k − 1 degrees of freedom (df )
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(Hedges 1992). The null hypothesis tested by the Q statistic is that all effect sizes are

homogenous and any variability results from sampling error. Large values of Q suggest

that our collection of effect sizes is heterogeneous. Three Q statistics – one for each

content area – are presented in Table 1.

A secondary index for analyzing effect-size homogeneity is the I2 index, which “…

describes the percentage of total variation across studies that is due to heterogeneity ra-

ther than chance” (Higgins et al. 2003, p. 558). We calculate I2 as

I2 ¼ 100 Q−k þ 1ð Þ
k−1

%: ð4Þ

Higgins et al. (2003) interpret I2 values as showing no variation, low variation, mod-
erate variation, and high variation for cutoffs of 0%, 25%, 50%, and 75%, respectively.

As with results from the Qtest, resulting I2 values (see Table 1) indicate that random-

effects estimation would be appropriate.

The random-effects estimate of the mean can be interpreted as an average effect size

because it does not assume the population of effect sizes can be completely explained

by a unique effect-size representation. Among many other sources, Hedges and Vevea

(1998, p. 493) present a general formula for calculating the random-effects mean effect

size as

�d
� ¼

Xk

i¼1
w�
i diXk

i¼1
w�
i

; ð5Þ

where wi
* is the random-effects weight and is calculated as vi þ τ̂2ð Þ−1 . The vi term is

given in (2). The addition of τ̂2 , typically referred to as the between-studies variance,

represents the presence of true variability among studies beyond sampling error. In

place of the term ‘between-studies variability’ commonly used in meta-analysis applica-

tions, we will refer to between-effects variability. The between-effects variance compo-

nent must be estimated; we used the commonly implemented DerSimonian and Laird

(1986) estimator

τ̂2 ¼ max 0 ;
Q−k þ 1Xk

i¼1
v−1i −

Xk

i¼1
v−2i =

Xk

i¼1
v−1i

h i
0
B@

1
CA : ð6Þ

Last, the conditional variance of the random-effects mean is

v�• ¼
1Xk

i¼1
w�
i

: ð7Þ
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Table 1 Homogeneity indices

Quantity Mathematics Reading Science

Q 7572.9* 5607.1* 6462.2*

I2 97.7 97.2 97.3

Note. The degrees of freedom for the Q statistic are the same for Mathematics and Science (df = 176) but differ for
Reading (df = 158).
*p < .05.
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Using (5) and (7), a 95% confidence interval about the random-effects mean can be

formed as

�d
� � 1:96

ffiffiffiffiffi
v�•

p
; ð8Þ

and a 95% prediction interval can be calculated as

�d
� � 1:96

ffiffiffiffiffi
τ̂2

p
: ð9Þ

In an effort to explain between-effects variability, we examined mixed-effects regression
models. These models incorporate regression coefficients that associate study characteris-

tics (i.e., moderators) to study outcomes while allowing for unexplained variance in the

model (Raudenbush 2009). Our mixed-effects regression models consider effect sizes as

outcomes, and study characteristics (such as test) as moderators of the variability among ef-

fect sizes. For each we provide a Q-model statistic, denoted as QM(df). This statistic as-

sesses the amount of total variation explained by the model. When effect sizes are well-

explained by the moderators, QM will be large. We also provide a Q-error statistic, denoted

as QE(df). This statistic assesses the amount of total variation not explained by the predic-

tions when a fixed effects model (with explained variation not incorporated) is examined;

lower QE values are desired. Result for QM and QE can be found in Tables 2, 3 and 4.

Results
Overall analyses

Figure 1 provides error bar plots for all effects by content area and shows that the

ranges of effects within content areas were fairly similar. The lowest effects were

medium in magnitude and negative, representing cases where immigrants outper-

formed natives, while the highest effects were large and positive. Across all content

areas, over 80% of effect sizes were positive, indicating an achievement gap which fa-

vored native test takers. Furthermore, across all content areas no large negative effects

were seen. Last, over 75% of the effects were statistically significant at the α = .05 level.

Table 1 provides effect-size homogeneity information for each content area. All three

data sets had statistically significant Q statistics. In addition, the average I2 across the

content area was 97%, which is very large. Both homogeneity indices agree that effect

sizes for all three outcomes are heterogeneous. As previously stated these indices also

indicate the appropriateness of adopting a random-effects model.
www.manaraa.com

Table 2 Mathematics mixed-effects model

Excluding testa Excluding gradeb

Moderator β SE p β SE p

[intercept] 0.635* 0.077 < .05 0.504* 0.063 < .05

Year -0.007 0.009 .44 -0.005 0.009 .57

Test (PISA) — — — -0.152* 0.054 < .05

Grade

Grade 4 vs. Grade 8 -0.237* 0.085 < .05 — — —

Grade 4 vs. Age 15 -0.274* 0.069 < .05 — — —
aQM(3) = 16.3*, QE(173) = 6864.6*.
bQM(2) = 8.0*, QE(174) = 7393.4*.
*p < .05.


Table 3 Reading mixed-effects model

Excluding testa Excluding gradeb

Moderator β SE p β SE p

[intercept] 0.510* 0.54 < .05 0.510* 0.054 < .05

Year -0.017* 0.008 < .05 -0.017* 0.008 < .05

Test (PISA) — — — -0.073 0.053 .18

Grade

Grade 4 vs. Age 15 -0.073 0.054 .17 — — —
a,bQM(2) = 7.8*, QE(156) = 5358.2*.
*p < .05.
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Table 5 provides the between-effects variances, as well as random-effects means and

their associated 95% confidence and prediction intervals for all content areas. Mean ef-

fect sizes for mathematics and reading data were identical (both equal to 0.38). This in-

dicates a small-to-moderate overall effect favoring native students. The mean effect for

the science data was slightly larger (0.43) and also favored native students. All means

were statistically different from zero. Last, the between-effects variances τ̂2ð Þ were fairly
large and similar across all subjects.
Mixed-effects regression models

As part of the mixed-model analyses, all data sets were checked for multicollinearity

among moderators. Bivariate correlations were calculated for all predictors (see Table 6).

In all three content areas the largest correlation, by far, was between grade and test.

This occurs because PISA is given only to 15 year olds, PIRLS to 4th graders, and

TIMSS at multiple grade levels. For this reason, we did not include grade and test sim-

ultaneously as moderators in the models. Beyond this high degree of multicollinearity,

other moderators had low degrees of dependence as determined by moderately-low bi-

variate correlations and low variance inflation factors (all were less than two).

Tables 2, 3 and 4 provide regression coefficients, standard errors, and probability

values for both models (excluding either grade or test) in each of the three content

areas.

Mathematics data

Results for mathematics data differed based on whether grade or test was used as a

moderator in the model. When test and year were modeled (i.e., excluding grade), the

only statistically significant moderator of the size of the immigrant gap was test
www.manaraa.com

Table 4 Science mixed-effects model

Excluding testa Excluding gradeb

Moderator β SE p β SE p

[intercept] 0.654* 0.071 < .05 0.563* 0.058 < .05

Year -0.004 0.008 .65 -0.003 0.008 .76

Test (PISA) — — — -0.183* 0.050 < .05

Grade

Grade 4 vs. Grade 8 -0.166* 0.078 < .05 — — —

Grade 4 vs. Age 15 -0.268* 0.063 < .05 — — —
aQM(3) = 18.9*, QE(173) = 5787.3*.
bQM(2) = 13.8*, QE(174) = 6099.6*.
*p < .05.


Figure 1 Error bar plots for mathematics, reading, and science effect sizes, respectively.
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β̂test ¼ −0:152
� �

. This implies that, holding year constantd, the average difference among

effect sizes between the PISA and TIMSS data was 0.152. Specifically, the immigrant

achievement gap is 0.152 standard deviations larger for TIMSS data than for PISA data.

When grade and year were included as moderators (i.e., excluding test), results

were similar for the slopes representing the moderator grade ( β̂grade 1½ � ¼ −0:237 and

β̂grade 2½ � ¼ −0:274 ). The predicted size of the gap for 4th graders was 0.64 standard

deviations, controlling for year. The immigrant achievement gap in math was 0.237

standard deviations smaller for 8th grade test takers than for 4th grade test takers, and

0.274 standard deviations smaller for 15 year olds than for 4th graders. Taking the dif-

ference between these slopes gives the difference between gaps for 8th graders and

15 year olds, which is a negligible 0.001 standard deviations. These values show that

the size of the immigrant achievement gap is lower for all older examinees, by about

one-fourth of a standard deviation.

Both models explained a significant amount of heterogeneity in the math gaps, as indi-

cated by QM(3) = 16.3, p <.05 and QM(2) = 8.0, p <.05, respectively. However, both Q-error

statistics (QE from the fixed model) were quite large and statistically significant (see

Table 2), indicating much effect-size variability has yet to be explained.
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Table 5 Random-effects means

Subject Mean effect
size (�d

�
)

Between-effects
variance (τ̂2)

95% Confidence interval for
the mean

95% Prediction
interval

Mathematics 0.38 0.11 [0.33, 0.43] [-0.27, 1.03]

Reading 0.38 0.09 [0.33, 0.43] [-0.21, 0.97]

Science 0.43 0.09 [0.38, 0.48] [-0.16, 1.02]


Table 6 Predictor correlations

Content Area Variable Year Test Grade

Mathematics Year 1.00 .09 -.10

Test .09 1.00 -.92*

Grade -.10 -.92* 1.00

Reading Year 1.00 -.11 .11

Test -.11 1.00 -1.00*

Grade .11 -1.00* 1.00

Science Year 1.00 .09 -.10

Test .09 1.00 -.92*

Grade -.10 -.92* 1.00

*p < .05.
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Reading data

In contrast to the results for mathematics, results for the reading data did not signifi-

cantly differ based on whether grade or test were entered in the model. In both in-

stances year was a significant moderator β̂year ¼ −0:017
� �

. On average, the immigrant

achievement gap has decreased by 0.017 standard deviations each year since 2000. This

result is best interpreted as a weak, general trend over time rather than a year-to-year

difference because none of the examinations studied is offered every year. We examine

this result more closely with a cumulative quantitative synthesis in Appendix B. The

reading model explained a significant amount of effect-size heterogeneity even given a

large degree of uncertainty (QM(2) = 7.8, p <.05). This QM result was the same for both

grade and test models. As with the mathematics models, the Q-error statistic (QE) was

quite large and statistically significant (see Table 3), which means a large degree of

effect-size variability was not explained by the predictors.
Science data

For science, the significance of the moderators in both models (i.e., with grade or test)

was similar. Both test and grade explained a significant amount of effect-size heterogeneity.

The slope for test β̂test ¼ −0:183
� �

reveals that the average effect size was 0.183 larger for

TIMSS than PISA. In the case of grade ( β̂grade 1½ � ¼ −0:166 and β̂grade 2½ � ¼ −0:268) re-

sults were similar to those for the mathematics data. The immigrant achievement gap

was 0.166 standard deviations larger for 4th grade test takers than for 8th grade test

takers, and 0.268 standard deviations larger for 4th graders than for 15 year olds.

Taking the difference between these slopes gives the difference between gaps for 8th

graders and 15 year olds, which is about 0.10 standard deviations. Given the intercept

of 0.65, these results suggest that the immigrant achievement gap is greatest in grade 4,

is about 25 percent lower for 8th graders and another 16 percent lower for the 15-year

olds. Both science models explained a significant amount of effect-size heterogeneity,

as respectively indicated by QM(3) = 18.9, p <.05 and QM(2) = 13.8, p <.05. As with the

mathematics and reading models, both Q-error statistics (QE) were quite large and sta-

tistically significant (see Table 4).
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Model fit

We also tested a series of assumptions for each linear model. First, many potential in-

fluential points had been eliminated by virtue of their small sample size of immigrant

students (5% of the total set of effects were excluded, as previously mentioned). Many

of the excluded effects were large. Leverage plots were also examined to determine if

any influential points existed. Within the remaining effect sizes, several potential influ-

ential points were located, but their influence was minimal based on information de-

rived from the leverage plots. Ultimately we did not exclude any additional

observations as these potentially-influential points are likely not products of measure-

ment imprecision (see our previous discussion on excluding data from small samples).

Normal quantile-quantile plots confirmed approximate normality of residuals for all

content areas, and partial residual plots confirmed approximate linearity of continuous

predictors related to effects, in all content areas. All preliminary assumption checks

were completed using the car package in R (Fox & Weisberg 2011). As in all modeling

scenarios, model fit can always be improved. First, though all models explained a sig-

nificant amount of variability in effects (as shown by QM), all model fit tests (QE re-

sults) were very large and statistically significant. This excessive unexplained variability

may be explainable if we were to test other moderators (see Limitations). Second,

variance-explained values for all six models, denoted as R2
meta , were all small, ranging

from almost zero to .08 (values are not shown here), further indicating the potential for

other moderators to explain effect-size variability. This measure compares the variabil-

ity explained by the model with no moderators to the variability explained by a model

with moderators (see Aloe et al. (2010) for more information). Both of these indicators

of model fit suggest further variation remains in all three sets of content-area effect

sizes.
Discussion

We found significant overall mean effect sizes for mathematics �d
�
math ¼ 0:38

� �
, reading�

�d
�
reading ¼ 0:38

�
, and science

�
�d
�
science ¼ 0:43

�
, all of which are moderate in magnitude.

Prediction intervals suggested that the bulk of the effects in all areas are likely positive,

favoring native students. Only 8 percent (for science) to 13 percent (for mathematics)

of effects are likely to be below zero. This addresses the overarching research question

and indicates that, in fact, an immigrant achievement gap exists for all assessed content

areas in favor of native students. The gap for science is slightly larger than the mathem-

atics and reading gaps, which are empirically identical. While a difference across con-

tent areas has never been previously tested with meta-analytic methods, other authors

have posited such a pattern. For example, Schnepf (2007) argued that the gap would

likely be larger for reading than mathematics because assessments of mathematics re-

quire fewer linguistic skills than reading assessments; this would relate directly to im-

migrant students’ proficiency in the language of testing.

This quantitative synthesis does not completely support this notion; rather, it suggests

that immigrant students are at an equal disadvantage in reading and in mathematics

when compared to native students. Yet the logic presented by Schnepf (2007) may ex-

plain the significantly higher gap in science. Perhaps the language used in mathematics

is more universally understood, while context in both math and reading assessments
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may aid immigrant test takers who are non-native language speakers in deriving mean-

ing in order to successfully respond to questions. Further, the content in a mathematics

assessment is often numerical, and to the extent that the immigrant students’ native

countries use the same number system as the country of testing, this type of assess-

ment may be less daunting than a science assessment. Unlike mathematics items,

science items may tend to be word problems that include technical language in the lan-

guage of testing. They also may not provide as much context as a reading passage. For

example, immigrant students who do not speak the language of testing well may be

able to create meaning from the reading passage. In other words, not knowing the

meaning of some words may not be as detrimental when the item is longer and has

context as opposed to when the item is short and lacks context or includes technical

terms (which may be likelier for science items). However, such an explanation only ap-

plies to non-native language speakers. Some immigrants do speak the language of the

test as a first or additional language. Perhaps this finding also hints at potential differ-

ences in quality of science curriculum and instruction between origin and destination

countries. If immigrant students have been exposed to a poorer quality science instruc-

tion in their native countries, for example, then this may exhibit itself in a science im-

migrant achievement gap on assessments given in the destination country.

Six separate regression models, two for each content area, addressed our subsequent

research questions. While statistical significance of the moderators varied, some simi-

larities were found across the models, specifically between mathematics and science.

The achievement gap was larger in TIMSS than PISA for both mathematics and science

by about one to two tenths of a standard deviation. The gap was also smaller for older

immigrant children by about two tenths of a standard deviation in both math and

science.

Next, only one moderator was significant for the reading effects – year of testing. Al-

though this quantitative synthesis is in the main cross-sectional, the significance of this

moderator would indicate a possible weak trend in which the gap in reading has de-

creased from the beginning to the end of the last decade (see Appendix B for a slightly

different perspective on the matter).

Because few studies have examined macro-level differences in the immigrant achieve-

ment gap, it is difficult to make strong theoretical interpretations of the findings. Per-

haps the most significant findings are the differences across grades and tests. The fact

that younger students show a larger immigrant achievement gap is not necessarily in-

tuitive, since it is commonly believed that young children adapt to new environments

more easily and learn new languages more quickly than older students. The difference

we found may reflect the composition of student populations in later grades, which in-

clude those who have not dropped out of school or who have the means and the sup-

port at home to stay in school, and are thus possibly the most advantaged in a given

country. This may imply that academic differences between native and immigrant stu-

dents at the highest levels of privilege are still present but narrower, although our data

are not disaggregated to a level where analysis of this hypothesis is possible.

The difference in the gap magnitude between TIMSS and PISA may be in part due to

the type of content assessed. Specifically, TIMSS assesses the effectiveness of the cur-

riculum whereas PISA evaluates the extent to which pupils at the end of compulsory

schooling can apply what they have learned to situations they will likely encounter in
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their daily lives. Content assessed in TIMSS evaluates formal mathematics knowledge,

whereas items in PISA are more applied in nature as they pose real-world scenarios

that require mathematics. Perhaps immigrant students fare better on items that tell a

story, provide more context, and allow them to apply their experience and knowledge,

such as those in PISA. Coupled with the finding that older immigrant children exhibit

a narrower gap, this may indicate that immigrant adolescents who have not yet

dropped out of school are nearly as ready for the workforce (as measured by PISA) as

native students. Our findings seem to suggest larger disparities between younger and

older students when assessed with TIMSS than PISA.

Limitations
Several considerations suggest the use of caution when making inferences from this

analysis. First, we were limited because most administrations of the three assessments

did not collect country of origin information from immigrant pupils. For this reason,

we could not investigate macro-level characteristics of the countries in this study. The

most recent research in this area indicates that both origin and destination macro-level

variables must be investigated to fully understand the immigrant achievement gap

(Levels & Dronkers 2008; Levels et al. 2008; Dronkers et al. 2014). Second, the

generalizability of this study is limited to OECD countries, although our initial investi-

gations also found an overall significant mean immigrant achievement gap with a wider

set of countries (Thompson et al. 2011). Third, because we defined immigrants as stu-

dents not born in the country of testing, we are studying by definition only first-

generation immigrants (Rumbaut 2004). Fourth, in the three testing programs, coun-

tries are permitted to exclude students who are non-native speakers of the testing lan-

guage and who have received less than one year of instruction in that language. This

study, as any other employing data from the PIRLS, PISA, and TIMSS, is representative

of students who have a certain degree of proficiency in the language of testing. Fifth,

some of the variation in effects found across test content may be due to the differing

methodologies employed in PISA and TIMSS for calculating variance rather than an

observed effect in the population. Finally, our quantitative synthesis examined the ex-

tent to which the immigrant achievement gap varied by subject. To address such a

question, we compared reading, science, and mathematics scores that are not on the

same scale, although standardized effect sizes in part address this issue.

We have suggested reasons for possible gap differences using several moderators. Al-

though characteristics of an immigrant student, such as their non-native language

speaker status, may contribute to the existence of a gap, they are most certainly not the

only source, as previously discussed. Strong evidence has shown inequities in the qual-

ity of the education that immigrants are provided in destination countries (e.g., Con-

chas 2001; Crul & Holdaway 2009; Lee 2002; Minoiu & Entorf 2005; OECD 2010a;

Schneeweis 2006). Although immigrant students may be at an academic disadvantage

due to their individual characteristics, such as socioeconomic status and native lan-

guage, the experiences they have had in both their origin and destination countries

have an effect on the immigrant achievement gap. Finally, as we did not analyze

student-level data, we did not investigate any student or school correlates of the immi-

grant achievement gap. Thus, it is difficult to conclusively discuss all possible sources

of the gap. In the future, malleable factors must be investigated in order to better
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understand how to close the gap. More than likely, factors found at the school level will

have the most potential for reducing or eradicating this deficit.

Conclusions
One of the aims of this quantitative synthesis was to examine the extent of the homo-

geneity of the immigrant achievement gap from a macro-level perspective. We found

that the immigrant achievement gap is a very heterogeneous phenomenon and varies

by grade and type of content assessed. It also varies by year (for reading). Thus even

though gaps are present on average, they are not constant across all conditions and

groups of students. In a small percent of populations, the gaps favor immigrants. Intui-

tively, the size of the science gap in comparison to the reading and mathematics gaps

may make sense. Science assessments may include more complex and technical lan-

guage than mathematics and reading assessments. Future research should investigate

the content of the assessments as well as include item-level analyses in order to better

understand what features of mathematics and reading assessments yield a smaller im-

migrant achievement gap than science assessments. The same applies to the type of

content assessed in PISA and TIMSS, as evidence presented here suggests immigrants

perform less poorly on PISA than TIMSS (relative to natives).

Most analyses to date have questioned whether or not a gap exists across countries,

often controlling for student-level variables such as race, ethnicity, level of poverty, and

native language. Our analysis demonstrates that, on average, there is a gap for the three

core content areas across countries. Importantly, single-level analyses that control for

student-level variables cannot answer all questions about what may explain the immi-

grant achievement gap. Because the gap is not a student-level phenomenon, in that no

individual student him or herself can exhibit a gap, future questions about the sources

of this deficit must analyze the gap as a school-level phenomenon. Further, Dronkers

et al. (2014) emphasize that “contextual features of both origin and destination coun-

tries do affect the educational performance of migrant children, and must be part of

any explanation of migrant children’s school success.” (p. 2). Immigrants do not arrive

in destination countries as a blank slate. Factors such as their educational experiences

and reasons for migration influence their degree of success in the destination country.

Characteristics of the origin country such as political stability, level of economic devel-

opment, and length of compulsory education have shown significant effects on the edu-

cational achievement of immigrants in the destination country (Levels & Dronkers

2008; Levels et al. 2008; Dronkers et al. 2014). To this end, future studies should con-

tinue to investigate possible moderators of the immigrant achievement gap at a national

level from both origin and destination countries.

This article provides the most systematic investigation of the immigrant achievement

gap to date based on three critical databases. Our analyses investigate correlates of the

gap at a macro level. Our findings are consistent with the existing literature which has

continuously reported an immigrant achievement gap. Our findings may allow re-

searchers to now focus on investigating malleable factors to address this academic def-

icit between immigrant and native students instead of continuing to focus on whether

or not a gap exists between these students. We hope that our results provide aid organi-

zations with evidence on what variables are associated with the gap so they can tailor in-

terventions to ameliorate the immigrant achievement gap at a national level. Future
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research should begin to identify further malleable factors at the school and country

levels in order to address the academic deficit between immigrant and native students.

Endnotes
aAccording to the United Nations Development Programme, almost four times as

many people move within countries as across countries (UNDP 2009).
bFor test, PISA was coded as “1” and TIMSS and PIRLS were coded as “0.” A third

code was not necessary because TIMSS and PIRLS data were never analyzed together

because different participants are tested in the two programs. For grade, we created

dummy variables for 4th graders (reference group), 8th graders, and 15-year olds.

cThe standard deviation is Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nNi −1ð Þ SNið Þ2þ nIi−1ð Þ SIið Þ2

nNi þnIi−2

r
, where SNi and SIi are the re-

spective standard deviations of the native and immigrant samples for the ith sample.
dHenceforth we will not repeat the phrase “holding all other moderators constant”

for the sake of brevity.

Appendix A List of OECD countries in quantitative synthesis

1. Australia

2. Austria

3. Belgium

4. Canada

5. Chile

6. Czech Republic

7. Denmark

8. Estonia

9. Finland

10. France

11. Germany

12. Greece

13. Hungary

14. Iceland

15. Ireland

16. Israel

17. Italy

18. Japan

19. Korea

20. Luxembourg

21. Mexico

22. Netherlands

23. New Zealand

24. Norway

25. Poland

26. Portugal

27. Slovak Republic

28. Slovenia
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29. Spain

30. Sweden

31. Switzerland

32. Turkey

33. United Kingdom

34. United States
Appendix B Cumulative meta-analyses
While investigating year as a predictor, we became interested in how mean effects var-

ied over time for each content area. Therefore we completed cumulative meta-analyses

for each subject. Cumulative meta-analyses include multiple, successive meta-analyses

for each time point (in our case, year) of data. For example, our data begins at year

2000. At the first time point, only effects based on tests given in 2000 were meta-

analyzed using the random-effects procedures described above. Next, the following

time point (i.e., year = 2001) is considered and the same process is completed using ef-

fects from 2000 and 2001. This process is then repeated for all time points through

2009. The main advantage of performing a cumulative meta-analysis is the ability to
www.manaraa.com

Figure 2 Cumulative meta-analyses for mathematics, reading, and science data, respectively.
Random-effects means are on the vertical axis and cumulative years included in the quantitative synthesis
are on the horizontal axis. Means are plotted with their associated 95% confidence interval. Each mean and
confidence interval represents a quantitative synthesis of all effects within the years indicated by the label
on the horizontal axis.
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see the stabilization (or lack thereof ) of mean effects over time (here, across years of

testing).

Figure 2 provides the cumulative meta-analyses for all content areas. As time pro-

gresses, confidence intervals typically decrease in size, implying a more precise mean

estimate. This is expected as, over time, the number of effects used to calculate the

mean increases. However, in a few instances, going from one year to the next, k did not

change because the given subject was not tested between those years but other(s) were.

These duplicate points were nonetheless included to ensure comparability across the

three plots.

Overall, results for all content areas showed fairly stable mean effects, suggesting the

gap has been fairly consistent over the period from 2000 to 2009. This is confirmed by

the overlap of the confidence intervals across all years, for each subject. One exception

may be for the reading data, where a practically significant jump (i.e., an increase in the

gap) of about one-tenth of a standard deviation was seen from 2000 to 2001. This re-

flects the weak, but statistically significant effect of the year moderator for the reading

model. Practically speaking, this may mean that although the gap in reading increased

between the years 2000-2001, it stabilized over time. This initial jump followed by sub-

sequent decreases may have manifested itself in a negative effect in the reading model

when, in fact, the gap was consistent across the last decade for reading as it was for sci-

ence and mathematics. From a policy standpoint, this suggests that efforts to address

the deficit between immigrant and native students in the core subjects have not closed

the achievement gap in the past decade.
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